Submitting to the leaderboard
To submit your method to the leaderboard, contact okvqa.comm [at[ gmail [dot] com and include (1) the OK-VQA test results output file, (2) a name for the method, (3) a github repo or paper link, (4) your institution.
Evaluation
We follow the same format as VQA for evaluation. See the instructions at README and use this code for evaluation.
OK-VQA Leaderboard
Rank | Model | Overall Accuracy |
---|---|---|
1 |
Prophet HDU & HFUT |
61.11 |
2 |
PromptCap UW, Rochester, Microsoft, AI2 |
60.4 |
3 |
REVIVE Microsoft & University of Washington |
58.0 |
4 |
KAT Microsoft, CMU & Yale |
54.41 |
5 |
PICa Microsoft |
48.0 |
6 |
CBM Hitz Center, UPV |
47.9 |
7 |
MCAN Hangzhou Dianzi University |
44.65 |
8 |
VLC-BERT University of British Columbia (UBC), Vector Institute for AI |
43.14 |
9 |
UnifER NUS |
42.13 |
10 |
MAVEx UT Austin & AI2 |
41.37 |
11 |
KRISP FAIR & CMU |
38.90 |
12 |
ConceptBERT Ecole Poyltechnique |
33.66 |
13 |
MUTAN + AN AI2 and CMU |
27.84 |
14 |
MUTAN | 26.41 |
15 |
BAN + AN AI2 and CMU |
25.61 |
16 |
BAN | 25.17 |
17 |
MLP | 20.67 |
18 |
Q only | 14.93 |